Frage zum Druckstaueffekt

  • Salut,


    das ist jetzt eine reine Verständnisfrage, ich hoffe, das geht in Ordnung.
    Ich kapiere nicht, wie der Druckstaueffekt zustande kommt. Es scheitert wahrscheinlich an meiner Vorstellung von Schallwellen, aber ich steige einfach nicht dahinter.
    Wikipedia erklärt das mit diesem Bild:


    Schallwellen breiten sich so aus, oder?


    Das würde dann doch bedeuten, um es jetzt mal falsch auszudrücken, dass die Wellenlänge senkrecht auf das Hindernis trifft. Wieso spielt dann die zur Wellenlänge orthogonale Größe des Hindernisses eine Rolle? Im ersten Bild von Wikipedia würde es ja noch Sinn machen, wenn die Amplitude wirklich räumlich nach oben und unten gehen würde, der Zeichnung folgend, aber das ist ja nicht der Fall.


    Wie muss ich mir also eine Schallwelle vorstellen, damit der Druckstaueffekt Sinn macht? Am besten mit Erklärung, wie alles Sinn macht :rolleyes:


    Liebe Grüße :)
    David

  • Also ich habe mich jetzt nicht mit dem Druckstaueffekt beschäftigt.


    Aber eine Schallwelle stelle ich mir nicht wie einen Welle vor. Also die Luft schwingt nicht auf und ab. Für mich sind das sich kugelförmig ausbreitende Druckunterschiede. Also auf das Diagramm umgelegt entspricht der Wellenberg höherem Druck.


    Vielleicht hilfts.

  • Ne, genau ist ja das Problem. :D So stell ich mir das auch vor, und diese Vorstellung kann ich eben nicht mit dem Druckstaueffekt vereinbaren.
    Aber danke für die Antwort, das hat es wahrscheinlich etwas klarer gemacht, was ich meine. :)

  • Das ganze geht eigentlich nur um Reflektion und Überlagerung. Eintreffende Schallwellen werden reflektiert und treffen beim Zurücklaufen auf neu eintreffende Schallwellen, und die Amplituden der ein- und auslaufenden Wellen addieren sich. Wenn Wellenberg auf Wellenberg trifft, bekommt man die doppelte Amplitude, dies entspricht dann einem höheren Schalldruck. Physikalisch ausgedrückt, handelt es sich um eine stehende Welle vor einer harten Wand.


    Die Hindernissgröße kommt ins Spiel, weil das obige Bild nur dann funktioniert, wenn das Hinderniss sehr viel größer ist, als die Wellenlänge. Ist das Hindernis kleiner, gibt es keine Reflexion sondern mehr oder weniger ausgeprägte Beugungseffekte. Wenn ein Spektrum an Frequenzen auf ein Hindernis trifft, tritt der Effekt also nur für Wellenlängen auf, die kleiner sind, als das Hindernis - es gibt also eine Maximalwellenlänge für den Effekt. Weil Wellenlängen und Frequenzen umgekehrt proportional sind, folgt, dass es eine Minimalfrequenz gibt. Diese wird in dem Wikipedia-Artikel als Grenzfrequenz bezeichnet und über die Gleichung berechnet.


    Ich finde übrigens den Artikel ausserordentlich schlecht geschrieben!

  • Der erste Absatz ist klar, darum gehts ja.


    Mein Verständnisproblem liegt da, dass ich nicht verstehe, inwiefern Wellenlänge und Hindernisgröße zusammenhängen, also weshalb und wo der Unterschied zwischen Beugung und Reflexion passiert.
    Die Frage ist mir beim Thema Druckempfängerprinzip bei Mikrofonen gekommen, erst hat es Sinn gemacht, dass Frequenz mit der maximalen Höhenanhebung proportional zum Kapseldurchmesser ist (bzw. Membran-, ihr wisst schon), bis ich länger drüber nachgedacht hab.
    Wenn immer nur Hochdruck und Tiefdruck senkrecht auf die Membran prallen (vereinfacht gesagt), was spielt dann die zu dieser Richtung orthogonale Ausdehnung der Membran für eine Rolle, inwiefern steht diese Ausdehnung im effektiven Verhältnis zur Wellenlänge?


    Ich vermute, dass ich wahrscheinlich den Wald vor lauter Bäumen nicht sehe, aber wenn einer noch eine Erklärung parat hat, bei ders vielleicht *klick* macht, wäre ich sehr dankbar, wenn er sie äußern würde :)


    und danke an Two für die Antwort! :)

  • Mein Verständnisproblem liegt da, dass ich nicht verstehe, inwiefern Wellenlänge und Hindernisgröße zusammenhängen, also weshalb und wo der Unterschied zwischen Beugung und Reflexion passiert.


    Oha, da wird es kompliziert. Um das zu verstehen, musst Du relativ weit eintauchen in die Theorie der Wellenausbreitung. Was man hier als Modell benutzen kann, ist das Huygenssche Prinzip.
    Vereinfacht kann man es sich etwa so vorstellen: Wenn eine Welle auf ein Hinderniss trifft entsteht an jedem Punkt eine neue Kugelwelle, und die Überlagerung aller Kugelwellen bildet eine neue Wellenfront. Betrachtet man zB ein punktförmiges (dh beliebig kleines) Hindernis, dann bildet sich eine auslaufende Kugelwelle, die sich mit der einfallenden ebenen Welle (dh parallel einlaufende Wellenfronten) überlagert. Dann entsteht keine stehende Welle, weil die auslaufende Welle kreisförmig und die einfallende Welle eben ist - es gibt dann keine Linie, auf der sich die ein- und auslaufenden Wellenfronten addieren könnten. Ist das Hindernis sehr klein, ist man immer noch recht nahe an dieser Situation und die stehende Welle kann sich nicht bilden. Erst wenn das Hindernis sehr gross ist, bildet sich davor ein Bereich in dem sich die ausfallenden kreisförmigen Wellen zu einer ebenen Wellenfront addieren, die dann wiederum mit der einfallenden Wellenfront eine stehende Welle bilden kann.


    Wo kommt nun die Wellenlänge ins Spiel? Die Wellenlänge ist ein Maß für den Abstand gleicher Phasen in einer Welle. Die Bedingung dafür, dass sich Wellenberge konstruktiv, dh. so, dass eine größer Amplitude entsteht, überlagern, ist, dass die sich überlagernden Wellen an einer bestimmten Position gleichzeitig einen Wellenberg haben, sie müssen also in Phase sein. Wenn sich zwei Wellen treffen, so dass ein Wellental mit einem Wellenberg zusammenfällt, wenn sie also außer Phase sind, gibt es keine konstruktive sondern destruktive Überlagerung, dh. die Wellen löschen sich gegenseitig aus. Jetzt kannst Du also leicht erkennen, dass im Fall des kleinen Hindernis kein Bereich entsteht, in dem die einfallenden und ausfallende Welle in Phase sind. Einfach, weil die Form der Wellen nicht zusammen passt.


    Zusammengefasst ist also die Wellenlänge ein Maß dafür, wie klein ein Objekt sein darf, damit eine Welle es noch "sehen" kann. Das ist übrigens exakt der gleiche Grund, warum man mit Mikroskopen keine beliebig kleinen Objekte sehen kann. Wird das Objekt kleiner als die Wellenlänge (also beim Licht einige hundert Nanometer) wird es vom Mikroskop einfach nicht mehr wahrgenommen.

  • Mein Verständnisproblem liegt da, dass ich nicht verstehe, inwiefern Wellenlänge und Hindernisgröße zusammenhängen, also weshalb und wo der Unterschied zwischen Beugung und Reflexion passiert.


    bässe haben grosse amplituden und eine grosse wellenlänge (zum verständnis: ein basston mit 1 Hz wäre ein tsunami. der geht durch alles durch! da bebt die erde)
    pings vom hihat haben kleine amplituden und eine kleine wellenlänge.
    deshalb hörst du ausserhalb eines technoclubs eher den bass als die hihat. der geht durch die wände, die ja ein grosses hindernis sind. die hihat bleibt gefangen!


    klingt komisch is aber so :)

    *es muss clippen!
    *wer einschlafe mit popo die kratz, der aufwache mit finger die stink...!


    Death Metal: Souldevourer
    Acoustic Covers with Flair: Ruppert Spielt

  • Ok, danke Two, jetzt hab ichs glaub ich kapiert! :)
    Zumindest macht es jetzt Sinn, eine letzte Frage hätte ich trotzdem noch: Gibt es jetzt eine Formel, die den Zusammenhang zwischen der Größe des Hindernisses und der Wellenlänge erfasst? Mir ist jetzt klar, dass es zusammenhängen muss, nur wie es das konkret tut, also messbar, noch nicht. Anders formuliert: Welcher konkrete/formelle Zusammenhang macht es möglich, dass ich z.B. ausrechnen kann:
    Frequenz = 340(m/s) / 0,04m = 8,5kHz
    (wenn es eben 15°C hat und ich die die Frquenz der Höhenanhebung von nem Druckmikro mit 4cm Membrandurchmesser ausrechnen will :P)
    Warum können die 0,04m gleichzeitig die Wellenlänge und der Durchmesser der Membran sein, wie leite ich mir das formell her?
    Oder müsste ich dazu ein paar Semester Physik studieren? :D


    Danke soweit an alle :)

  • Lies dich doch hier mal durch: http://downloads.neumann.com/d.php?download=docu0003.PDF


    Du kannst die Grenzfrequenz ausrechnen, also die niedrigste Frequenz, die Dein Mikro noch aufnehmen kann.
    Die Gleichung hast Du schon benutzt: Grenzfrequenz = Schallgeschwindigkeit / Hindernissdurchmesser.

    Ein Mikro mit 4 cm Membran nimmt doch auch tiefere Fequenzen als 8.4 kHz auf?!

    Ich hätte auch so gern ein Hobby...

  • Die Gleichung habe ich nicht hergeleitet sondern bei Wikipedia gefunden. Mir kommt der Wert auch hoch vor, aber ich weiss nicht, wie gross solche Mikrofone für den Einsatz im Tieffrequenten Bereich gebaut sind. Eher größer als 4 cm im Durchmesser würde ich sagen.


    Ich nehme außerdem an, es handelt sich um ein 3dB-Kriterium, wie meistens bei Angaben von Cutoff-Frequenzen. Dh. wenn der Frequenzgang sonst linear ist, knickt er bei tiefen Frequenzen so ab, dass das Signal bei 8.4 kHz um 3dB kleiner ist.

  • Lies nochmal, da steht fc Grenzfrequenz des Druckstaueffekts und nicht vom Mikrofon. ;)


    Deswegen hat ein normales Mikro mit geschlossener Kapsel eine Höhenanhebung (bei offenen Kapseln tritt kein Druckstaueffekt auf, stattdessen hat man es mit dem Nahbesprechungseffekt zu tun - eine Anhebung der Bassfrequenzen, wenn die Schallquelle sehr nah am Mikrofon ist). Eine Grenzfläche hingegen hat aufgrund ihrer Bauweise aus Sicht des Druckstaueffekts eine unendliche Membranfläche, weshalb die Anhebung alle hörbaren Frequenzen betrifft. B


    Ergänzend zu den Ausführungen von Two kann man vielleicht noch die Unterscheidung von Transversalwellen und Longitudinalwellen erwähnen.


    Transversal: Schwingungsrichtung ist orthogonal (senkrecht) zur Ausbreitungsrichtung
    Longitudinal: Schwingungsrichtung ist entlang der Ausbreitungsrichtung.


    In Deinem Beispiel oben sind Transversalwellen dargestellt, Schallwellen sind aber Longitudinalwellen.
    Elektromagnetische Wellen (z.B. Licht oder Satellitenfernsehen) sind Transversalwellen. Man kann sie polarisieren, das heisst so filtern/senden, dass nur eine Schwingungsebene existiert und nicht unendlich viele (z.B. horizontal oder vertikal wie beim Fernsehen). Das nutzt man z.B auch für 3D-Fernsehen/Kino mit Polarisationsbrillen. Für Schall existiert nichts vergleichbares, soweit ich weiss.

  • So, auch nach ein paar Wochen bin ich kein Stück klüger, aber sollte ich irgendwann nochmal eine Normalsterblichenerklärung finden, denke ich hoffentlich dran und poste es hier. Danke (verspätet, sorry) für alle Beiträge :)

Jetzt mitmachen!

Du hast noch kein Benutzerkonto auf unserer Seite? Registriere dich kostenlos und nimm an unserer Community teil!